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Abstract: - Multiple secondary users can cooperate to increase the reliability of spectrum sensing in cognitive 

radio networks. However, the total transmission power grows approximately linearly with the number of 

cooperative secondary users. This paper proposes a new approach to optimize the trade-off between sensing 

reliability and power efficiency in cooperative cognitive radio networks over fading channels. We assume K 

cooperative secondary users each collect N samples during the sensing time.   The proposed approach is based 

on dividing the spectrum sensing into two phases. In the first phase, we use only n of N samples, (n ≤ N) to 

check the channels state, then k of K cooperative secondary users, (k ≤ K) which are in deeply faded channels 

are discarded. We call this n a check point of the sensing time. The spectrum sensing with relatively less-faded 

channels are continued during the second phase. Therefore, there is a check point at which the sensing time can 

be optimized in order to maximize the probability of detection and the power efficiency. Several experiments 

are carried out to test the performance of the proposed approach in terms of detection probability and power 

efficiency. The obtained results show that the proposed approach enhances the detection probability as well as 

it shortened the optimal sensing time. Moreover, it improves the overall power efficiency.    
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1 Introduction 

One of the major challenges in design of wireless 

networks is the use of the frequency spectrum. 

Recent measurements by Federal Communications 

Commission (FCC) show that 70% of the allocated 

spectrum is in fact not utilized [1]. Spectrum 

utilization can be improved significantly by allowing 

a secondary user (SU) to utilize a licensed band when 

the primary user (PU) is absent. Cognitive radio (CR) 

has been proposed as a promising technique for 

future wireless communication systems [2]–[4]. CR 

is able to fill in spectrum holes and serve its users 

(secondary users) without causing harmful 

interference to the licensed user (PU). To do so, the 

CR must continuously sense the spectrum it is using 

in order to detect the reappearance of the PU. Once 

the PU is found to be active, the SU is required to 

vacate the channel. Therefore, spectrum sensing is of 

significant importance in CR networks. Moreover, 

periodic sensing is essential where the SU has to be 

aware of the channel status at all times. This is 

achieved by using a frame structure as in [5]–[6]. In 

this structure, each frame consists of a sensing period 

and a transmission period. At the end of each sensing 

period, the SU transmission starts when the licensed 

channel is idle. Otherwise, the SU will wait until the 

next frame to sense the licensed channel again.  

     There are two important parameters associated 

with spectrum sensing: probability of detection and 

probability of false alarm. From the primary user’s 

perspective, the higher the detection probability, the 

better protection it will have from the SU. However, 

from the secondary user’s perspective, the lower the 

false alarm probability, the more secondary 

transmission opportunities it will have. Therefore, a 

better sensing quality can be obtained by using a 

longer sensing period or, large number of samples.  

     Cooperative communications refer to the class of 

techniques, where the benefits of multiple-input-

multiple-output (MIMO) techniques are gained via 

sharing information between multiple cooperating 

terminals in a wireless networks. Wireless relay 

networks that employ cooperative diversity have 

sometimes been referred to as virtual MIMO systems 

[7]–[8]. Multiple secondary users can cooperate to 

increase the reliability of spectrum sensing. The key 

challenge of spectrum sensing is the detection of 

weak signals in noise channels with a large 

probability of detection. Cognitive radio sensing 

performance can be improved using secondary users 

cooperation where users share their spectrum sensing 
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measurements. Having multiple cooperating users 

increases diversity by providing multiple 

measurements of the signal and thus guarantees a 

better performance at low signal-to-noise ratio 

(SNR). It also provides a possible solution to the 

hidden-terminal problem that arises due to 

shadowing or severe multipath fading environments 

[9]–[10].   

     From the above discussion it is clear that, 

increasing the number of cooperative secondary users 

will increase the number of collected samples during 

the sensing time and this will improve the reliability 

of spectrum sensing in terms of detection probability. 

On the other hand, the more the collected samples 

during the sensing time, the more the power would 

be consumed. Thus, there exists a trade-off between 

power consumption (power efficiency) and detection 

probability; we can get higher detection probability 

but we need to consume more power instead. The 

authors in [11]–[12], considered the trade-off 

between the sensing quality and the achievable 

throughput. The spectrum sensing duration and the 

achievable throughput trade-off in a cooperative 

cognitive radio network over Nakagami fading 

conditions was introduced in [13]. However, none of 

these papers have examined the trade-off between 

detection probability and power efficiency in 

cooperative cognitive radio networks. Therefore, it is 

of great interest to consider this trade-off in this 

paper.  

     In this paper, we first study the trade-off between 

sensing quality in terms of detection probability and 

power efficiency. Then we propose a new approach 

to optimize the trade-off between detection 

probability and power efficiency in cooperative 

cognitive radios over fading wireless channels.  The 

basic idea of the proposed approach can be explained 

as follows; assume K cooperative secondary users 

each collect N samples during the sensing time.   The 

proposed approach is based on dividing the spectrum 

sensing into two phases. In the first phase, we use 

only n of N samples, (n ≤ N) to check the channels 

state, then k of K secondary users, (k ≤ K) which are 

in deeply faded channels are discarded. We call this n 

a check point of the sensing time. The spectrum 

sensing with relatively less-faded channels are 

continued during the second phase. Therefore, there 

is a check point at which the sensing time can be 

optimized in order to maximize the probability of 

detection and the power efficiency. 

     The remainder of this paper is organized as 

follows; Section 2 presents the general system model 

for spectrum sensing. The relation between 

probability of detection and probability of false alarm 

is also established in this section. In Section 3, 

presents the energy detection over Rayleigh fading 

channels. Spectrum sensing based on decision fusion 

is explained in Section 4. In Section 5 we explain the 

sensing-power efficiency trade-off. The proposed 

approach used to optimize this trade-off is also 

presented in this section. Simulation results and 

discussion are given in Section 6. Finally, 

conclusions are drawn in Section 7. 

 

 

2 General System Model for 

Cooperative Spectrum Sensing 

In this section, the general model for spectrum 

sensing is presented. Then we introduce the energy 

detection scheme and analyze the relationship 

between the probability of detection and the 

probability of false alarm.  

 

2.1 Cooperative Spectrum Sensing 

The critical challenging issue in spectrum sensing is 

the hidden terminal problem, which occurs when the 

SU is shadowed or in severe multipath fading. To 

address this problem, multiple secondary users can 

cooperate in spectrum sensing [9]–[10]. Therefore, 

cooperative spectrum sensing can greatly improve 

the detection probability in Rayleigh fading channels 

[14]. In general, cooperative spectrum sensing can be 

performed as shown in Fig. 1. Each SU performs its 

own local spectrum sensing measurements 

independently and then makes a binary decision on 

whether the PU is present or not. Then all of the 

secondary users forward their decisions to a common 

receiver, Rc. The common receiver fuses the SU 

decisions and makes a final decision to infer the 

absence or the presence of the PU.  

     In this paper we consider a cognitive radio 

network with K cooperative secondary users as 

shown in Fig. 1. Spectrum sensing is performed 

periodically every N samples, which is the total 

number of samples for each SU. The spectrum 

sensing problem at the i-th SU is modeled as a binary 

hypothesis test to determine the absence or the 

presence of the PU. Let H0 denote the absence of the 

PU and H1 designate the presence of the PU. 

Spectrum sensing is to decide between the following 

two hypotheses 
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where yi(n) is the received signal at the i-th SU, s(n) 

represents the primary user’s signal samples which 
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are independently and identically distributed (i.i.d.) 

with zero mean and variance E[|s(n)|
2
] = σ

2
s, wi(n) is 

the additive white Gaussian noise, and hi(n) is the 

complex channel gain of the sensing channel between 

the PU and the i-th SU. When the channel is non-

fading, hi(n) is constant during the sensing process. 

On the other hand, when the channel is fading, hi(n) 

includes multipath and fading effects. It is assumed 

that noise samples are i.i.d. with zero mean and 

variance E[|wi(n)|
2
] = σ

2
w. Denote γ = σ

2
s/ σ

2
w as the 

received signal-to-noise ratio (SNR) of the PU 

measured at the secondary receiver of interest, under 

the hypothesis H1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Cooperative spectrum sensing. 

 

Generally, two probabilities are of interest for 

indicating the performance of a sensing algorithm; 

probability of detection, Pd, which defines the 

probability of the sensing algorithm correctly 

detecting the presence of primary signal under 

hypothesis H1; and probability of false alarm, Pf, 

which defines the probability of the sensing 

algorithm falsely declaring the presence of primary 

signal under hypothesis H0. Obviously, for a good 

detection algorithm, the probability of detection 

should be as high as possible while the probability of 

false alarm should be as low as possible. 

 

2.2 Energy Detection over Non-Fading 

Channels 

The spectrum sensing algorithm considered in this 

paper is the energy detection algorithm [15] because 

of its relatively low computational complexity, ease 

of implementation and the fact that it does not require 

any prior information about the primary user’s signal. 

Once the signal yi has been collected, the i-th SU 

computes its energy, the test statistic for the energy 

detector is given as [12], [14]: 
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Under hypothesis H0, the test static T(yi) is a random 

variable whose probability density function (PDF) 

p0(x) is a Chi-square distribution with 2N degrees of 

freedom for complex valued case [12]. The energy 

detection is performed by measuring the energy of 

the received signal yi(n) in a fixed bandwidth W over 

an observation or sensing time window Ts.  If εi is the 

i-th SU detection threshold, the probability of false 

alarm, Pfi, is given by 

dxxpHyTTP iisifi ∫
∞

=>=
ε

εε )())((Prob),( 00                                    

(3) 

where Pfi denotes the false alarm probability of the i-

th SU in its local spectrum sensing. Under hypothesis 

H1, let p1(x) represent the PDF of the test static T(yi). 

For a chosen threshold εi, the probability of detection, 

Pdi is given by 

dxxpHyTTP iisidi ∫
∞

=>=
ε

εε )())((Prob),( 11                                    

(4) 

where Pdi denotes the detection probability of the i-th 

SU in its local spectrum sensing. From the central 

limit theorem, we can approximate the probabilities 

of detection and false alarm as follows [12]; for a 

large N, T(yi) can be approximated as a Gaussian 

random variable with mean,  
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If we consider circularly symmetric complex 

Gaussian (CSCG) noise case and for the primary 

signal s(n), we consider the complex phase shift 

keying (PSK) modulated signal; the probabilities of 

false alarm and detection can be approximated, 

respectively as follows: 
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where Q(.) is the complementary distribution 

function of the standard Gaussian, and given as 

( ) ∫
∞









−=

x

dt
t

xQ
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exp
2

1 2

π
          (9)                                          

It is clear that, Pfi in Eq.(7) is independent of SNR 

since under H0 there is no primary signal present. It is 

clear also from Eq.(8) that, for a large number of 

samples, N  it is more likely to detect a signal with 

higher probability of detection.  

If the decision is H0 when there is a primary user 

present, it is called missed detection and its 

probability is called missed detection probability, Pmi 

which can be written as 
 

),(1),( sidisimi TPTP εε −=         (10) 

                                            
Equation (8) can be rewritten in terms of detection 

threshold as 
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where diP  is the i-th SU target probability of 

detection. Using Eq. (7) this threshold is related to 

the probability of false alarm as follows: 
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For a target probability of detection, diP , the 

probability of false alarm is related to the target 

detection probability as follows: 
 

( )( )γγ NPQQP difi ++= − 121
      (13)                                               

 

Note N is the maximum integer not greater than Ts × 

fsa, where fsa is the received signal sampling 

frequency. In a similar way, the probability of 

detection for a target probability of false alarm is 

given by 

( )( )
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3 Energy Detection over Rayleigh 

Fading Channels 
 

In this section, we derive the average detection 

probability over Rayleigh fading channels [14].  Note 

that the probability of false alarm, however, remains 

the same under any fading channel since it is 

considered for the case of no signal transmission and 

as such is independent of SNR. When the channel is 

varying due to fading effects, the previously given 

equations for probability of detection represents the 

probability of detection conditioned on the 

instantaneous SNR. Therefore, by averaging the 

conditional probability of detection over the SNR 

fading distribution, we can find the expressions in 

closed form of detection probability in fading 

channels. 

( )∫=
γ

γεγ dxxfBQP ifadingdi )(,2,      (15)                                            

where B is the time-bandwidth product and fγ(x) is 

the probability of distribution function of SNR under 

fading. Under Rayleigh fading, the signal amplitude 

follows a Rayleigh distribution. In this case, the SNR 

follows an exponential PDF, 
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where γ  is the average SNR. Therefore, in Rayleigh 

fading, a closed-form formula for detection 

probability over Rayleigh fading channels may be 

obtained as follows, 
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where Γ(.) is the gamma function. 

 

4 Spectrum Sensing Based on Decision 

Fusion 
 

In cooperative spectrum sensing, all secondary users 

identify the availability of the PU independently. 

Each SU makes a binary decision based on its local 

spectrum sensing and then forwards one bit of the 

decision to the common receiver as in Fig. 1. Let di 

represent the local spectrum sensing result of the i-th 

SU. The value of di for i = 1,…, K, can be given as 

follows 

 





=
PU  theof presence  theinfers SU The  1

 PU  theof absence  theinfers SU The   0
id                                 

(18) 

Once the decision is made by each SU, there are 

different rules available for making the final decision 

on the presence of the PU [17]. At the common 
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receiver, all 1-bit decisions are fused together 

according to the following logic rule:  
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Equation (19) demonstrates that the common receiver 

infers the presence of PU signal, i.e., H1, when there 

exists at least k out of K secondary users inferring H1. 

Otherwise, the common receiver decides the absence 

of PU signal, i.e., H0.  

 

A. Logic-OR Rule 

The common receiver infers the presence of the PU 

signal when there exists at least one SU that has the 

local decision H1. Therefore, the OR rule corresponds 

to the case of k = 1, i.e., Rc ≥ 1. Otherwise, there is no 

PU signal. Assuming that all decisions are 

independent, the probability of detection and 

probability of false alarm of cooperative spectrum 

sensing based on the OR rule is given, respectively 

as, 
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11                    (20)                                                  
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B. Logic-AND Rule 

The common receiver infers the presence of the PU 

signal if all decisions say that there is a primary user. 

It can be seen that the AND rule corresponds to the 

case of k = K. The probability of detection and 

probability of false alarm of cooperative spectrum 

sensing based on the OR rule is given, respectively 

as, 

∏
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                           (22)                                                      
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C. Majority Rule 

 This decision rule is based on majority of the 

individual decisions of SU. If half or more of the 

decisions say that there is a PU signal, the final 

decision declares that there is a primary user. The 

probability of detection and probability of false alarm 

can be obtained as in [12]. It can be seen that the OR 

rule is very conservative for the secondary users to 

access the licensed band of the PU. As such, the 

chance of causing interference to the PU is 

minimized as will be shown in results and discussion 

section. 

 

   

5 Sensing-Power Efficiency Trade-off 

and the Proposed Approach 

In this section, we study the fundamental trade-off 

between sensing quality in terms of probability of 

detection and power efficiency then we discuss how 

the sensing time can be optimized in order to 

maximize the probability of detection and the power 

efficiency.  

 

5.1 Problem Formulation 

For a cognitive radio network with K cooperative 

secondary users each collects N samples during the 

sensing time. The received K × N data matrix D is 

represented as 
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As mentioned before, to improve the probability of 

detection we have to increase the number of samples 

we collect for the sensing process, this can be 

achieved by increasing the number of cooperative 

secondary users. The probability of detection versus 

the number of samples under a non-fading channel is 

illustrated in Fig. 2 for K = 2, Nmax = 400, SNR = -10 

dB, and Pf = 0.1. It is clear that, the detection 

probability keeps increasing as more numbers of 

samples are utilized.  

     Generally, the large the number of cooperative 

secondary users, the more the samples we collect for 

the sensing process, the higher detection probability 

but the more power would be consumed during the 

spectrum sensing process. Thus, there exists a trade-

off between power consumption and probability of 

detection on spectrum sensing; one gets higher 

probability of detection but has to consume more 

energy instead.    
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Figure 2: The probability of detection versus the 

number of samples under a non-fading channel. 

 

 

5.2 The Proposed Approach 

The proposed approach is based on dividing the 

spectrum sensing into two phases. In the first phase, 

we use only n of N samples, n ≤ N to check the 

channels state, we call this n a check point of the 

sensing time. Then k of K cooperative secondary 

users, k ≤ K which are in a deeply faded channel are 

discarded. Thus, after the check point, there are only 

K – k secondary users employed for N – n samples. 

Eq. (25) shows the received data matrix under this 

new approach. It is clear from Eq. (25) that, after 

sensing n samples of K cooperative secondary users, 

the proposed approach selects k of cooperative 

secondary users, which are considered to be more 

faded than others, to discard. Therefore, discarding 

the cooperative secondary users with faded channel 

increases the overall power efficiency as explained 

next.  

Let N × P is the required power for each secondary 

user. Therefore, the power required for the sensing 

process using K cooperative secondary users will be 

K × N × P.  

 

 

 

 

 

 

 

 

 

 

 

 

To explain how the proposed approach improve the 

overall power efficiency, consider first the case of 

discarding one SU (k = 1), after n samples of sensing; 

this saves (N – n) × P in power. Now, if k 

cooperative secondary users are chosen to be 

discarded after n samples of sensing, we can save k × 

(N – n)×P in power compared to that K × N × P for 

all N samples from K cooperative secondary users.     

Power efficiency is proportional to the energy saved 

during the sensing process by discarding the deeply 

faded secondary users. That is, power efficiency 

should be an indicator of how much energy could be 

saved compared to the sensing of whole samples of 

all K cooperative secondary users. Therefore, we may 

represent the power efficiency ηp as follows.  

 
( )

NK

nNk
knp ×

−×
=),(η                  (26) 

     Figure 3 shows the power efficiency ηp versus the 

number of samples, using K = 8 and Nmax = 200 for 

different values of k. It is clear from this figure that, 

the power efficiency decreases as more numbers of 

samples are utilized. On the other hand, the power 

efficiency improved when discarding more secondary 

users, changing k from 1 to 6. Also for a given 

number of k, the power efficiency is improved when 

less number of samples n is employed before the 

check point. However, the probability of detection 

increases when more number of samples is 

employed. This trade-off can be optimized by finding 

the optimum sensing time for the proposed CR 

network.    

 

5.3 The Optimum Sensing Time 

What we want now is to derive a target function to 

determine the optimal sensing time that jointly 

maximizes the probability of detection and 

minimizes the power consumption under given 

parameters. As there is a trade-off between the 

probability of detection and power efficiency, the 

target function can be defined as  
 

( ) ),(1),( knPknT pdF ηββ ×+×−=      (27)                                    
 

where 0 ≤ β ≤ 1. 
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Figure 3: The power efficiency, ηp versus the 

number of samples. 

  

 

As explained above, Pd is proportional to the number 

of sensing samples N, while ηp decreases as more 

number of samples are employed; thus, the constant β 

controls the overall level of this target function as 

well as it controls this target function to have a 

maximum point. There are two extreme cases as 

follows;   

1. β → 0; The detection probability is regarded 

as the more important factor. Therefore, 

more number of samples are favorable to 

maximize the target function.  

2. β → 1; Power efficiency is regarded as more 

important than the detection probability.  

Therefore, there may exist some range for β at which 

the optimal sensing time could be found. It would be 

varied by other parameters, such as probability of 

false alarm, the size of the data matrix, and so on.  

     Figure 4 presents the target function over non-

fading channels for different values of β using K = 2, 

N = 400, and Pf = 0.1. From this figure it is clear that, 

the target function does not have a maximum point 

for β ≤ 0.1 and β ≥ 0.4. It is clear also that, the 

optimum check point which maximizes the target 

function tends to have lower for large values of β. 

For example, at β = 0.2 the optimal sensing time 

occurs at n = 300 samples, while at β = 0.3 the 

optimal sensing time occurs at n = 100 samples. 

However, from Eq. (27), increasing the value β will 

reduce the detection probability. Note that, the range 

of β to make the target function have a maximum 

point is altered if we change the above mentioned 

parameters.  
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Figure 4: The target function over non-fading 

channels for different values of β. 

 

 

6 Simulation Results and Discussion 

Figure 5 shows the complementary receiver 

operating characteristic (ROC) curves (probability of 

missed detection versus probability of false alarm) of 

the AWGN and Rayleigh fading channels, Eq. (17). 

The average SNR value Rγ = 5 dB and B = 5. It is 

clear that, the detection performance showed 

significant degradation under Rayleigh fading 

scenario. Therefore, under Rayleigh fading 

conditions, it becomes even more important to 

continue with less-faded channels (discarding the 

deeply faded channels) to maintain a certain level of 

performance.  
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Figure 5: Pm versus Pf over AWGN and Rayleigh 

fading channels. 
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Figure 6 shows the ROC curves of cooperative 

spectrum sensing for different numbers of secondary 

users over Rayleigh fading channels with average 

SNR value, Rγ = 5 dB and Pf = 0.1. It is clear that the 

probability of missed detection is greatly reduced 

when the number of cooperative secondary users 

increase for a given probability of false alarm.  
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Figure 6: Pm versus Pf over Rayleigh fading channel 

and different number of SU. 

  

 

Figure 7 shows the cooperative spectrum sensing 

performance with different fusion rules. It can be 

seen that the OR rule is the best among the fusion 

rules. In [16], it was also found that for many cases 

of practical interest, the OR rule gives better 

performance than other rules. The following results 

are obtained using the OR rule. 
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Figure 7: Pm versus Pf over Rayleigh fading channel 

and different fusion rules with Rγ = 10 dB and K = 8. 

In the following results, we assume that there are two 

secondary users, K = 2 and each collects 400 samples 

during the sensing time over Rayleigh fading 

channel, 0.1 < β ≤ 0.3, and Pf = 0.1.  A fundamental 

parameter determining the quality of detection is the 

average SNR, which mainly depends on the primary 

user’s transmitted power as well as its distance to the 

secondary users. Since our goal is to achieve 

optimum sensing time over the proposed approach, 

let us assume the following scenario, where the 

averages SNR of two secondary users have big 

differences. This scenario shows an environment in 

which one SU is experiencing rather severe fading, 

while the other is in a better condition. The average 

SNR values of the first and second secondary users 

are 5 dB and -15 dB, respectively.   

     Two different schemes are used to discard the 

secondary users. In the first scheme, the secondary 

users are randomly discarded from the CR network. 

While the second scheme select the secondary users 

with the highest signal strength to keep tracking the 

activity of the PU and discarding the users with the 

lowest signal strength. The second scheme requires 

additional feedback information to report the signal 

strength. 

      Figure 8 shows the target function over Rayleigh 

fading channels using the first scheme, the secondary 

users are randomly discarded at different values of β.    
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Figure 8: The target function over Rayleigh fading 

channels when the SU is randomly discarded. 

 

 

Figure 9 shows the above results when we consider 

the second scheme, the secondary users are discarded 

according to their signal strength. It is noticeable that 
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the overall level and maximum points of target 

functions are higher than those of Fig. 8. The target 

function for this scheme reaches its maximum point 

much earlier than the first scheme shown in Fig. 8.  
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Figure 9: The target function over Rayleigh fading 

channels when the SU is discarded according to the 

signal strength. 

 

 

Figure 10 presents a comparison in terms of detection 

probability using first and second schemes. It is clear 

that the detection probability of the second scheme 

has much higher value than of the first scheme, 

where it saturates approximately to 1 at n ≈ 40 

samples compared to n ≈ 100 samples when we used 

the first scheme.  
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Figure 10: Detection probability comparison using 

first and second schemes. 

 

 

 

 

Table 1: comparisons of the target function for the 

two schemes over Rayleigh fading channels.   

 

 

Table 1 shows the detailed comparisons of the target 

function for the two schemes. We can observe that, 

the second scheme in which the secondary users are 

discarded according to their signal strength, achieves 

the best performance. Not only the target function 

reaches its maximum point earlier but also it achieves 

higher performance. Therefore, by using the 

proposed approach with the second scheme, the 

overall power efficiency is improved while 

maintaining good detection probability. 

 

7 Conclusions 

In this paper we proposed a new approach to 

optimize the trade-off between sensing quality and 

power efficiency in cooperative cognitive radio 

networks over Rayleigh fading channels. The 

proposed approach is based on discarding the 

secondary users which are in deeply faded channels. 

Two different schemes were proposed to discard the 

secondary users. In the first scheme, the secondary 

users are randomly discarded. While the second 

scheme selecting the secondary users with the highest 

signal strength to keep tracking the activity of the PU 

and discarding the users with the lowest signal 

strength. The obtained results show that using the 

proposed approach with the second scheme enhances 

the detection probability as well as it shortened the 

optimal sensing time. Moreover, it improves the 

overall power efficiency.   
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